Tuning phase stability of complex oxide nanocrystals via conjugation.
نویسندگان
چکیده
Nanocrystals (NCs) attract tremendous research interests because of their unique properties to meet the demands of functionalities. To date, hybrid NCs with multiple components are developed to meet the rising demands that could be very difficult, or even impossible to be achieved by single-component NCs. Tuning properties by strain via conjugation could be an alternative solution. Strain engineering has been discovered and widely applied to many thin-film materials for tuning physical properties. Then, there is a further question to be addressed in this study: can we take the advantages we have learned in heteroepitaxy of thin films and transfer that into the NC conjugation? In order to demonstrate this possibility, we investigated NC conjugation of BiFeO3 and LaAlO3. We found that change in either LaAlO3-NC or BiFeO3-NC size would change the stability of rhombohedral-to-tetragonal phase transition. The present results show that strain engineering is possible to be realized in not only thin film but also NC conjugation. The same concept should be applicable to other complex oxide systems in order to broaden their practical applications for the rising demands of multifunctionalities.
منابع مشابه
Phase transformation and size tuning in controlled-growth of nanocrystals via self-seeded nucleation with preferential thermodynamic stability.
Controlled growth of nanocrystals (NCs) is produced by self-seeded nucleation with preferential thermodynamic stability. The intermediate reactants undergo in situ phase transformation forming the final products. The growth followed by irreversible phase transformation leads to the complete separation of nucleation and growth, thereby allowing size tuning of the final NCs.
متن کاملSynthesis of Zinc (II) Oxide Wurtzite Nano Crystals Via Zn (II) Minoxidil Nanocomposite As a New Precoursur
The study describes the synthesis and characterization of zinc(II) minoxidil nanocomposite (1). The reaction between zinc(II) acetate, minoxidil, {C9H15N5O=minoxidil=(2,4-diamino-6-piperidine-1-yl) pyrimidine N-oxide)} as a ligand and KI as bridging agent, in methanol at 60°C leads to the formation of nano-sized Zn(II) minoxidil nanocomposite, 1. Characterization of (1) was carried out by eleme...
متن کاملStructural behavior of laser-irradiated γ-Fe2O3 nanocrystals dispersed in porous silica matrix : γ-Fe2O3 to α-Fe2O3 phase transition and formation of ε-Fe2O3
The effects of laser irradiation on γ-Fe2O3 4 ± 1 nm diameter maghemite nanocrystals synthesized by co-precipitation and dispersed into an amorphous silica matrix by sol-gel methods have been investigated as function of iron oxide mass fraction. The structural properties of γ-Fe2O3 phase were carefully examined by X-ray diffraction and transmission electron microscopy. It has been shown that γ-...
متن کاملOptimization of Nanocrystals NaX Zeolite Synthesis with Different Silica Sources
The effects of varying the silica source on synthesis of NaX zeolite crystals via conventional hydrothermal method have been investigated. Five different silica sources were selected while other parameters like Al source, reaction and aging time, SiO2/Al2O3 molar ratio and temperature were same. The prepared products were characterized by XRD technique. The results showed that different cry...
متن کاملSynthesis and Characterization of Hydroxyapatite Nanocrystals via Chemical Precipitation Technique
In this study, hydroxyapatite (HA) nanocrystals have been synthesized via chemical precipitation technique. Diammonium hydrogen phosphate and calcium nitrate 4-hydrate were used as starting materials and sodium hydroxide solution was used as the agent for pH adjustment. The powder sample was evaluated by techniques such as scanning electron microscope, transmission electron microscope, Fou...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nano letters
دوره 14 6 شماره
صفحات -
تاریخ انتشار 2014